Skip to main content

Stern Frame


 
A stern frame may be cast or fabricated and its shape is influenced by the type of rudder being used and the profile of the stern. Sternframes also differ between twin and single screw ships, the single screw sternframe having a boss for the propeller shaft. Adequate clearance is essential between propeller blade tips and sternframe in order to minimise the risk of vibration. As blades rotate water immediately ahead of the blades is compressed and at the blade tips this compression can be transmitted to the hull in the form of a series of pulses which set up vibration. Adequate clearance is necessary or alternatively constant clearance, this being provided with ducted propellers such as the Kort nozzle. A rotating propeller exerts a varying force on the sternframe boss and this can result in the transmission of vibration. Rigid construction is necessary to avoid this. The stern post, of substantial section, is carried up inside the hull and opened into a palm end which connects to a floor plate, This stern post is often referred to as the vibration post as its aim is to impart rigidity and so minimise the risk of vibration. Side plating is generally provided with a Rabbet or recess in order that the plating may be fitted flush. The after most keel plate which connects with this region the structure od the ship serves no useful purpose and it is known as the 'deadwood'. This may be removed without ill effect on stability or performance and some sternframes are designed such that the deadwood is not present.

Comments

Popular posts from this blog

Why is a man hole door elliptical in shape?

Any opening in a pressure vessel is kept to a minimum and for a man entry an elliptical hole  is lesser in size than the corresponding circular hole. More over it is prime concern to have a  smoothed generous radius at the corners to eliminate stress concentration. Hence other  geometrical shapes like rectangle and square are ruled out.  To compensate for the loss of material in the shell due to opening, a doubler ring has to be  provided around the opening. The thickness of the ring depends on the axis length along the  dirrection in which the stresses are maximum and the thickness of the shell. It is important to  align the minor axis along the length of the vessel, as the stress in this direction is  maximum. Longitudinal stress: Pd/2t where P= pressure inside the vessel, d= diameter of the arc, t=  thickness of the shell plating  Circumferential stress: Pd/4t  More over a considerable material and weight saving is achieved as minor is along the  direction of maximum stress.

Shell Expansion Plan

It is a two dimensional drawing of a three dimensional surface of the ship’s hull form. This plan is very useful for the following information:It is used for marking the location of a hull Damage on this plan by identifying the strake number , letter and frame number so that the exact location of the damage and also suggested repairs are marked in a localised copy. The shell expansion can be used for finding areas of painting surfaces such as topside, boot topping and bottom areas by applying Simpsons rules directly.  In the shell expansion the vertical scale used is different from the horizontal scale and a suitable adjustment has to be made when calculating areas. This becomes useful in solving disputes concerning areas of preparation and painting. It gives information on the thickness of the original strake which is indicated by the number in the circle shown in the strake.  The quality of steel used is also shown by letters A,B,D E and AH, BH,DH, EH.