Skip to main content

What is caustic cracking or embrittlement? What is its cause? Suggest remedy This is

This is a form of intercrystalline/intergrannular cracking and occurs when a specific corrodent  and sufficient tensile stress exists. Iron consists of ferritic granules bonded by iron carbide so  this gives a scope of the intergrannular corrosion. This can be found in water tubes, super  heater, reheat tubes, and in stressed components of the water drum. The stress may be due  to thermal, bending or residual stress (due to welding). This usually occurs as a localized  attack in the combination of NaOH, some soluble silica and a tensile stress. The mechanism  begins with the accumulation of the corrodent NaOH due to – 
a. DNB (departure from nucleate boiling) 
b. Deposition 
c. Evaporation at the water line 
d. Small leakage 
e. High heat flux (rapid evaporation) 
f. High pressure

This corrosion below 149˚C or with NaOH concentration below 5% is rare. Increased 
susceptibility occurs at about 20~40%. This corrosion is difficult to identify in the beginning 
and ND testing has to be carried out at the suspected areas. At some time after the initial 
start of the corrosion, this manifests as a whitish highly alkaline deposits or sparkling 
magnetite. 

COUNTER MEASURES: 
a. Applying heat treatment process to relieve stresses after fabrication/repairs (welding 
etc) 
b. Correct and accurate boiler water treatment 
c. Avoid DNB 
d. Avoid accumulation of the deposits 
e. Prevent leakage of corrodents 
f. Prevent carryover 
g. Use of rifling in the water tubes

Comments

Popular posts from this blog

Why is a man hole door elliptical in shape?

Any opening in a pressure vessel is kept to a minimum and for a man entry an elliptical hole  is lesser in size than the corresponding circular hole. More over it is prime concern to have a  smoothed generous radius at the corners to eliminate stress concentration. Hence other  geometrical shapes like rectangle and square are ruled out.  To compensate for the loss of material in the shell due to opening, a doubler ring has to be  provided around the opening. The thickness of the ring depends on the axis length along the  dirrection in which the stresses are maximum and the thickness of the shell. It is important to  align the minor axis along the length of the vessel, as the stress in this direction is  maximum. Longitudinal stress: Pd/2t where P= pressure inside the vessel, d= diameter of the arc, t=  thickness of the shell plating  Circumferential stress: Pd/4t  More over a considerable material and weight saving is achieved as minor is along the  direction of maximum stress.

Shell Expansion Plan

It is a two dimensional drawing of a three dimensional surface of the ship’s hull form. This plan is very useful for the following information:It is used for marking the location of a hull Damage on this plan by identifying the strake number , letter and frame number so that the exact location of the damage and also suggested repairs are marked in a localised copy. The shell expansion can be used for finding areas of painting surfaces such as topside, boot topping and bottom areas by applying Simpsons rules directly.  In the shell expansion the vertical scale used is different from the horizontal scale and a suitable adjustment has to be made when calculating areas. This becomes useful in solving disputes concerning areas of preparation and painting. It gives information on the thickness of the original strake which is indicated by the number in the circle shown in the strake.  The quality of steel used is also shown by letters A,B,D E and AH, BH,DH, EH.