Skip to main content

Bearing clearance methods

Bearing Clearance Methods: 
It is important that regular checking of bearing clearance is carried out, as the clearance
determines the effectiveness of lubrication. 

Lead wire
 Traditional method, but requires that bearing are tightened just to obtain
clearance. Accurate as long as load is not over squeezed. Lead is not to squeeze blow 1/3rd of  original diameter. 

  • Turn the crank shaft and set the crank at TDC position.  
  •  Remove locking arrangements, mark the nut position. 
  • Slacken the nut and lower the bottom half with bolts.  
  • Then three lengths of lead wires would be laid circumferentially in the bottom half at three  places
  • Place the bottom half into position and tighten the nut to its tightening torque.  
  • Lower down the bottom half again.  
  • Remove the lead wires and take the measurement.  
  • It must have within the limit, if out of limit, the bearing shell must be replaced with new ones or  readjust the clearance by adjusting shims.   

Feeler gauge
Quick method, but more difficult to be accurate when using the long feelers 
as measuring point may not be the minimum point.
  • Turn the crank shaft and set the crank at BDC.  
  •  Insert the feeler gauge between lower half and crank pin.  
  • Take the measurement readings. 

Relies on the width of a plastic strip after compression. More accurate than

Bridge gauge
Depends on bedplate condition and crankshaft rigidity
Bridge gauge is an instrument for main bearing wears down measuring. 
  • Remove the lube oil supply pipe.  
  •  Remove upper bearing half and fit the bridge gauge.  
  • Then take the measurement by inserting feeler gauge.

More accurate


Popular posts from this blog

Differences between MC/MC-C and ME/ME-C engines

The electrohydraulic control mechanisms of the ME engine replace the following components of the conventional MC engine: Chain drive for camshaft Camshaft with fuel cams, exhaust cams and indicator cams Fuel pump actuating gear, including roller guides and reversing mechanism Conventional fuel pressure booster and VIT system Exhaust valve actuating gear and roller guides Engine driven starting air distributor Electronic governor with actuator Regulating shaft Engine side control console Mechanical cylinder lubricators. The Engine Control System of the ME engine comprises: Control units Hydraulic power supply unit Hydraulic cylinder units, including: Electronically controlled fuel injection, and Electronically controlled exhaust valve activation Electronically controlled starting air valves Electronically controlled auxiliary blowers Integrated electronic governor functions Tacho system Electronically controlled Alpha lubricators

Why is a man hole door elliptical in shape?

Any opening in a pressure vessel is kept to a minimum and for a man entry an elliptical hole  is lesser in size than the corresponding circular hole. More over it is prime concern to have a  smoothed generous radius at the corners to eliminate stress concentration. Hence other  geometrical shapes like rectangle and square are ruled out.  To compensate for the loss of material in the shell due to opening, a doubler ring has to be  provided around the opening. The thickness of the ring depends on the axis length along the  dirrection in which the stresses are maximum and the thickness of the shell. It is important to  align the minor axis along the length of the vessel, as the stress in this direction is  maximum. Longitudinal stress: Pd/2t where P= pressure inside the vessel, d= diameter of the arc, t=  thickness of the shell plating  Circumferential stress: Pd/4t  More over a considerable material and weight saving is achieved as minor is along the  direction of maximum stress.

Main engine interlocks

Interlocks are provided so that the engine can be started or reversed only when certain conditions have been fulfilled. When there is a remote control of engines, it is essential to have interlocks. This reduces the possibility of engine damage and any hazards to the operating personnel. Turning gear Interlock . This device prevents the engine from being started if the Turning gear is engaged. Running Direction Interlock . This prevents the fuel from being supplied if the running direction of the engine does not match the Telegraph. Starting Air Distributor in end position . This prevents starting from taking place if the shifting of the Distributor has not been completed. Main Lube. oil pressure, Piston cooling pressure, Jacket water pressure, and important parameters must be above the required minimum. Auxiliary Blower Interlock . The Auxiliary Blower is provided in case of Constant pressure turbo charging. Air Spring pressure Interlock . In case of the present generation