Skip to main content

What is priming in boiler?


Priming in boiler is the carryover of varying amounts of droplets of water in the steam. It lowers the energy efficiency of the steam and leads to the deposit of salt particles on the super heaters and in the turbines.

Causes of priming in boilers 

  • Improper construction of boiler
  • Excessive ratings
  • Sudden fluctuations in steam demand
  • Impurities in the boiler-water- foaming
  • High level of boiler water
When this boiler water carryover is excessive, steam-carried solids produce turbine blade deposits. These conditions often lead to super heater tube failures. Priming is related to the viscosity of the water and its tendency to foam. These properties are governed by alkalinity, the presence of certain organic substances and by total salinity or TDS. The degree of priming also depends on the design of the boiler and its steaming rate. 

Prevention of priming of boiler

  • Maintain the concentration of solids in the boiler water at reasonably low levels 
  • Avoiding high water levelsAvoid boiler loads 
  • Avoid sudden load changes 
  • Proper boiler design 
  • Very often contaminated condensate returned to the boiler system causes carry-over problems. In these cases the condensate should be temporarily wasted until the source of contamination is found and eliminated.
  • Use anti-foaming and anti-priming agents

Comments

  1. You have worked pleasantly with your bits of knowledge that makes our work simple. The data you have given is truly real and huge for us. Continue to share these kinds of article, Thank you.boiler installation quote liverpool

    ReplyDelete

Post a Comment

If you have any doubts.Please let me know

Popular posts from this blog

Main engine interlocks

Interlocks are provided so that the engine can be started or reversed only when certain conditions have been fulfilled. When there is a remote control of engines, it is essential to have interlocks. This reduces the possibility of engine damage and any hazards to the operating personnel. Turning gear Interlock . This device prevents the engine from being started if the Turning gear is engaged. Running Direction Interlock . This prevents the fuel from being supplied if the running direction of the engine does not match the Telegraph. Starting Air Distributor in end position . This prevents starting from taking place if the shifting of the Distributor has not been completed. Main Lube. oil pressure, Piston cooling pressure, Jacket water pressure, and important parameters must be above the required minimum. Auxiliary Blower Interlock . The Auxiliary Blower is provided in case of Constant pressure turbo charging. Air Spring pressure Interlock . In case of the present generation...

Differences between MC/MC-C and ME/ME-C engines

The electrohydraulic control mechanisms of the ME engine replace the following components of the conventional MC engine: Chain drive for camshaft Camshaft with fuel cams, exhaust cams and indicator cams Fuel pump actuating gear, including roller guides and reversing mechanism Conventional fuel pressure booster and VIT system Exhaust valve actuating gear and roller guides Engine driven starting air distributor Electronic governor with actuator Regulating shaft Engine side control console Mechanical cylinder lubricators. The Engine Control System of the ME engine comprises: Control units Hydraulic power supply unit Hydraulic cylinder units, including: Electronically controlled fuel injection, and Electronically controlled exhaust valve activation Electronically controlled starting air valves Electronically controlled auxiliary blowers Integrated electronic governor functions Tacho system Electronically controlled Alpha lubricators

Shell Expansion Plan

It is a two dimensional drawing of a three dimensional surface of the ship’s hull form. This plan is very useful for the following information:It is used for marking the location of a hull Damage on this plan by identifying the strake number , letter and frame number so that the exact location of the damage and also suggested repairs are marked in a localised copy. The shell expansion can be used for finding areas of painting surfaces such as topside, boot topping and bottom areas by applying Simpsons rules directly.  In the shell expansion the vertical scale used is different from the horizontal scale and a suitable adjustment has to be made when calculating areas. This becomes useful in solving disputes concerning areas of preparation and painting. It gives information on the thickness of the original strake which is indicated by the number in the circle shown in the strake.  The quality of steel used is also shown by letters A,B,D E and AH, BH,DH, EH.