Skip to main content

Lambda controller

The purpose with the lambda controller is to prevent injection of more fuel in the combustion chamber of an auxiliary engine on the ship, than can be burned during a momentary load increase. This is carried out by controlling the relation between the fuel index and the charge air pressure. The Lambda controller is also used as stop cylinder.

Advantages of Lambda Controller

The lambda controller has the following advantages:
  1. Reduction of visible smoke in case of sudden momentary load increases on auxiliary engines.
  2. Improved load ability.
  3. Less fouling of the engine’s exhaust gas ways.
  4. Limitation of fuel oil index during starting procedure.

Principle of Lambda Controller

In case of a momentary load increase, the regulating device will increase the index on the injection pumps and hereby the regulator arm (1) is turned, the switch (2) will touch the piston arm (3) and be pushedb downwards, whereby the electrical circuit will be closed.
Thus the solenoid valve (4) opens. This valve is supplied with compressed air and the same is supplied to assist the turbocharger. When this jet system is activated, the turbocharger accelerates and increases the charge air pressure, thereby pressing the piston (3) backwards in the lambda cylinder (5). When the lambda ratio is satisfactory, the jet system will be deactivated. At a 50% load change the system will be activated for about 3-8 seconds.
If the system is activated more than 10 seconds, the solenoid valve will be shut off and there will be a remote signal alarm for “jet system failure”.

Fuel Oil Limiting During Start Procedure

During the start procedure the lambda controller is used as an index limiter. Hereby heavy smoke formation is prevented during start procedure and further the regulating device cannot over-react. The jet system is blocked during the starting procedure until the engine has reached about 110 RPM.


  1. Governor is a device which senses the speed of an engine or turbine and controls the fuel to the engine or turbine to maintain the speed at a desired level to meet changes in load or horse power required. Please visit our site to get the best Woodward governor controller. Woodward governor controller


Post a Comment

If you have any doubts.Please let me know

Popular posts from this blog

Differences between MC/MC-C and ME/ME-C engines

The electrohydraulic control mechanisms of the ME engine replace the following components of the conventional MC engine: Chain drive for camshaft Camshaft with fuel cams, exhaust cams and indicator cams Fuel pump actuating gear, including roller guides and reversing mechanism Conventional fuel pressure booster and VIT system Exhaust valve actuating gear and roller guides Engine driven starting air distributor Electronic governor with actuator Regulating shaft Engine side control console Mechanical cylinder lubricators. The Engine Control System of the ME engine comprises: Control units Hydraulic power supply unit Hydraulic cylinder units, including: Electronically controlled fuel injection, and Electronically controlled exhaust valve activation Electronically controlled starting air valves Electronically controlled auxiliary blowers Integrated electronic governor functions Tacho system Electronically controlled Alpha lubricators

Why is a man hole door elliptical in shape?

Any opening in a pressure vessel is kept to a minimum and for a man entry an elliptical hole  is lesser in size than the corresponding circular hole. More over it is prime concern to have a  smoothed generous radius at the corners to eliminate stress concentration. Hence other  geometrical shapes like rectangle and square are ruled out.  To compensate for the loss of material in the shell due to opening, a doubler ring has to be  provided around the opening. The thickness of the ring depends on the axis length along the  dirrection in which the stresses are maximum and the thickness of the shell. It is important to  align the minor axis along the length of the vessel, as the stress in this direction is  maximum. Longitudinal stress: Pd/2t where P= pressure inside the vessel, d= diameter of the arc, t=  thickness of the shell plating  Circumferential stress: Pd/4t  More over a considerable material and weight saving is achieved as minor is along the  direction of maximum stress.

Main engine interlocks

Interlocks are provided so that the engine can be started or reversed only when certain conditions have been fulfilled. When there is a remote control of engines, it is essential to have interlocks. This reduces the possibility of engine damage and any hazards to the operating personnel. Turning gear Interlock . This device prevents the engine from being started if the Turning gear is engaged. Running Direction Interlock . This prevents the fuel from being supplied if the running direction of the engine does not match the Telegraph. Starting Air Distributor in end position . This prevents starting from taking place if the shifting of the Distributor has not been completed. Main Lube. oil pressure, Piston cooling pressure, Jacket water pressure, and important parameters must be above the required minimum. Auxiliary Blower Interlock . The Auxiliary Blower is provided in case of Constant pressure turbo charging. Air Spring pressure Interlock . In case of the present generation