Skip to main content

Oil mist detector

LIGHT SCATTERING METHOD (NEPHELOMETRY)


In this form of crankcase oil mist detector individual sensors are placed at each monitoring point – each crank throw space and chain case (where applicable). A suction fan draws the sample through each detector. Light is transmitted at one end of the head where the sample flows through. Directly opposite the transmitter is a compensating receiver. This adjusts the light intensity by  feeding back a signal to the transmitter. A measurement sensor picks up the scattered light produced by the oil mist particles. The result is transmitted as an analogue signal back to the monitor twice per second. The monitor compares this signal against a set point, and an average of the other readings. When the scattered light picked up by the sensor reaches a pre determined point an alarm condition will be reached.

Advantages claimed for this system are:
    •    Sampling points fitted close to crankcase - no long runs of piping.
    •    Continuous parallel sampling - no high maintenance selector valves.
    •    Fast response time - may save the engine from bearing failure.

Comments

Popular posts from this blog

Why is a man hole door elliptical in shape?

Any opening in a pressure vessel is kept to a minimum and for a man entry an elliptical hole  is lesser in size than the corresponding circular hole. More over it is prime concern to have a  smoothed generous radius at the corners to eliminate stress concentration. Hence other  geometrical shapes like rectangle and square are ruled out.  To compensate for the loss of material in the shell due to opening, a doubler ring has to be  provided around the opening. The thickness of the ring depends on the axis length along the  dirrection in which the stresses are maximum and the thickness of the shell. It is important to  align the minor axis along the length of the vessel, as the stress in this direction is  maximum. Longitudinal stress: Pd/2t where P= pressure inside the vessel, d= diameter of the arc, t=  thickness of the shell plating  Circumferential stress: Pd/4t  More over a considerable material and weight saving is achieved as minor is along the  direction of maximum stress.

Shell Expansion Plan

It is a two dimensional drawing of a three dimensional surface of the ship’s hull form. This plan is very useful for the following information:It is used for marking the location of a hull Damage on this plan by identifying the strake number , letter and frame number so that the exact location of the damage and also suggested repairs are marked in a localised copy. The shell expansion can be used for finding areas of painting surfaces such as topside, boot topping and bottom areas by applying Simpsons rules directly.  In the shell expansion the vertical scale used is different from the horizontal scale and a suitable adjustment has to be made when calculating areas. This becomes useful in solving disputes concerning areas of preparation and painting. It gives information on the thickness of the original strake which is indicated by the number in the circle shown in the strake.  The quality of steel used is also shown by letters A,B,D E and AH, BH,DH, EH.