Skip to main content

How lubricating oil is supplied to crank pin bearing

  • The internal passages in the crankshaft are made in such a manner, in case of small diesel engines where crankshaft size is comparatively small, that oil is supplied to the main bearing. From there to the passage in the crankshaft it is feed to the crank pin bearing. Thus avoiding the complicated piping to supply oil to the crankpin bearing and gudgeon pin bearing. 
  • This is applicable only in case of small crankshafts. Bigger crankshafts may fail under fatigue if the holes are drilled out for the passage of the oil. Hence in case of the bigger crankshafts, no drilling of the holes is done on the crankshaft and hence this method of lubricating the bottom end bearing and gudgeon pin bearing is not applicable.
  •  In that case, there is a separate supply of lubricating oil to main bearing and as well as to the crosshead bearing, which will be further bifurcated into two: the crosshead bearing and piston cooling, and the bottom end bearing, for lubricating.

Comments

Popular posts from this blog

Why is a man hole door elliptical in shape?

Any opening in a pressure vessel is kept to a minimum and for a man entry an elliptical hole  is lesser in size than the corresponding circular hole. More over it is prime concern to have a  smoothed generous radius at the corners to eliminate stress concentration. Hence other  geometrical shapes like rectangle and square are ruled out.  To compensate for the loss of material in the shell due to opening, a doubler ring has to be  provided around the opening. The thickness of the ring depends on the axis length along the  dirrection in which the stresses are maximum and the thickness of the shell. It is important to  align the minor axis along the length of the vessel, as the stress in this direction is  maximum. Longitudinal stress: Pd/2t where P= pressure inside the vessel, d= diameter of the arc, t=  thickness of the shell plating  Circumferential stress: Pd/4t  More over a considerable material and weight saving is achieved as minor is along the  direction of maximum stress.

Shell Expansion Plan

It is a two dimensional drawing of a three dimensional surface of the ship’s hull form. This plan is very useful for the following information:It is used for marking the location of a hull Damage on this plan by identifying the strake number , letter and frame number so that the exact location of the damage and also suggested repairs are marked in a localised copy. The shell expansion can be used for finding areas of painting surfaces such as topside, boot topping and bottom areas by applying Simpsons rules directly.  In the shell expansion the vertical scale used is different from the horizontal scale and a suitable adjustment has to be made when calculating areas. This becomes useful in solving disputes concerning areas of preparation and painting. It gives information on the thickness of the original strake which is indicated by the number in the circle shown in the strake.  The quality of steel used is also shown by letters A,B,D E and AH, BH,DH, EH.