Skip to main content

Actions in case of Main Engine liner cracked

The engine cannot be run long in this condition. The leaking water is finding its way into the lubricating oil. The liner has to be changed.
The most logical step to take then is to isolate the faulty cylinder. It can be done.
  • Stop engine, isolate systems and allow to cool
  • Ensure a procedure is written that minimises the risk to personnel during the operation.
  • Discuss the task and written procedure with the engine room personnel to ensure they are familiar with the risks, and the methods to be used to minimise these risks.
  • Ensure the fuel pump is de-activated by lifting roller and locking.
  • Lift exhaust valve actuators so exhaust valve remains closed during running. (Note: the air spring supply to be left open)
  • Dismantle air start supply line, and blank with suitable steel plates, the main and control air pipes
  • Blank off main lube oil inlet to crosshead within the crankcase with a blanking plate.
  • Isolate the cylinder lubricator for that cylinder by placing all lubricators on no stroke.
  • Blank cooling water inlet and oulet.
The usual practice is to open up the cylinder head, remove the piston, and close back the cylinder head. All the passages that are connected to other parts of the engine will have to be blanked, so that the whole cylinder is completely isolated from the engine systems.
Since there is no piston in one of the cylinders of the engine, the crankshaft will be temporarily off-balanced. The engine has to be run at a much slower speed to avoid excessive vibration and unnecessary stress that can cause further damage.

Comments

  1. I am thankful for sharing this bulk of useful information. I found this resource utmost beneficial for me. Thanks a lot for your hard work.Waste Water Solutions Company

    ReplyDelete
  2. is it possible to repair cracked liner?

    ReplyDelete
  3. These technicians are trained to identify the cause of cylinder failure and will fix it as quickly as possible. If the cylinder is not standard, a new fabrication may be necessary. Get more interesting details about hydraulic company expert check out this site.

    ReplyDelete

Post a Comment

If you have any doubts.Please let me know

Popular posts from this blog

Differences between MC/MC-C and ME/ME-C engines

The electrohydraulic control mechanisms of the ME engine replace the following components of the conventional MC engine: Chain drive for camshaft Camshaft with fuel cams, exhaust cams and indicator cams Fuel pump actuating gear, including roller guides and reversing mechanism Conventional fuel pressure booster and VIT system Exhaust valve actuating gear and roller guides Engine driven starting air distributor Electronic governor with actuator Regulating shaft Engine side control console Mechanical cylinder lubricators. The Engine Control System of the ME engine comprises: Control units Hydraulic power supply unit Hydraulic cylinder units, including: Electronically controlled fuel injection, and Electronically controlled exhaust valve activation Electronically controlled starting air valves Electronically controlled auxiliary blowers Integrated electronic governor functions Tacho system Electronically controlled Alpha lubricators

Why is a man hole door elliptical in shape?

Any opening in a pressure vessel is kept to a minimum and for a man entry an elliptical hole  is lesser in size than the corresponding circular hole. More over it is prime concern to have a  smoothed generous radius at the corners to eliminate stress concentration. Hence other  geometrical shapes like rectangle and square are ruled out.  To compensate for the loss of material in the shell due to opening, a doubler ring has to be  provided around the opening. The thickness of the ring depends on the axis length along the  dirrection in which the stresses are maximum and the thickness of the shell. It is important to  align the minor axis along the length of the vessel, as the stress in this direction is  maximum. Longitudinal stress: Pd/2t where P= pressure inside the vessel, d= diameter of the arc, t=  thickness of the shell plating  Circumferential stress: Pd/4t  More over a considerable material and weight saving is achieved as minor is along the  direction of maximum stress.

Shell Expansion Plan

It is a two dimensional drawing of a three dimensional surface of the ship’s hull form. This plan is very useful for the following information:It is used for marking the location of a hull Damage on this plan by identifying the strake number , letter and frame number so that the exact location of the damage and also suggested repairs are marked in a localised copy. The shell expansion can be used for finding areas of painting surfaces such as topside, boot topping and bottom areas by applying Simpsons rules directly.  In the shell expansion the vertical scale used is different from the horizontal scale and a suitable adjustment has to be made when calculating areas. This becomes useful in solving disputes concerning areas of preparation and painting. It gives information on the thickness of the original strake which is indicated by the number in the circle shown in the strake.  The quality of steel used is also shown by letters A,B,D E and AH, BH,DH, EH.