Skip to main content

Ship AIS Switch-Off Procedure

AIS (Automatic Identification System) should normally remain ON at all times. Switching it OFF is allowed only under specific circumstances and must follow proper procedure.

When AIS May Be Switched OFF

As per SOLAS Regulation V/19:

  • If the Master believes AIS operation compromises ship’s safety or security

    • Piracy risk area

    • Security threat

    • Naval/military instructions

  • Flag State or Company security procedures permit it

AIS Switch-Off Procedure (Step-by-Step)

  1. Master’s Decision

    • Only the Master can authorize switching OFF AIS.

  2. Risk Assessment

    • Assess navigational, security, and traffic risks.

    • Ensure radar, ARPA, ECDIS, and lookout are fully effective.

  3. Inform Bridge Team

    • All watchkeepers must be informed.

    • Extra vigilance to be maintained.

  4. Switch OFF AIS Transmission

    • AIS may be set to:

      • Silent mode (preferred, if available), or

      • Power OFF (if silent mode not available)

  5. Log Book Entry (Very Important)
    Record in Deck Log Book:

    • Date & time AIS switched OFF

    • Exact position

    • Reason for switching OFF

    • Master’s authorization

    • Time and position when AIS switched ON again

  6. Continue Enhanced Watch

    • Maintain continuous radar and visual lookout.

    • Follow COLREGs strictly.

  7. Switch AIS ON ASAP

    • AIS must be switched ON once the threat no longer exists.

What is NOT Allowed

  • Switching OFF AIS for convenience

  • Keeping AIS OFF without valid reason

  • No logbook entry

  • Officer switching OFF without Master’s permission


Comments

Popular posts from this blog

Main engine interlocks

Interlocks are provided so that the engine can be started or reversed only when certain conditions have been fulfilled. When there is a remote control of engines, it is essential to have interlocks. This reduces the possibility of engine damage and any hazards to the operating personnel. Turning gear Interlock . This device prevents the engine from being started if the Turning gear is engaged. Running Direction Interlock . This prevents the fuel from being supplied if the running direction of the engine does not match the Telegraph. Starting Air Distributor in end position . This prevents starting from taking place if the shifting of the Distributor has not been completed. Main Lube. oil pressure, Piston cooling pressure, Jacket water pressure, and important parameters must be above the required minimum. Auxiliary Blower Interlock . The Auxiliary Blower is provided in case of Constant pressure turbo charging. Air Spring pressure Interlock . In case of the present generation...

Differences between MC/MC-C and ME/ME-C engines

The electrohydraulic control mechanisms of the ME engine replace the following components of the conventional MC engine: Chain drive for camshaft Camshaft with fuel cams, exhaust cams and indicator cams Fuel pump actuating gear, including roller guides and reversing mechanism Conventional fuel pressure booster and VIT system Exhaust valve actuating gear and roller guides Engine driven starting air distributor Electronic governor with actuator Regulating shaft Engine side control console Mechanical cylinder lubricators. The Engine Control System of the ME engine comprises: Control units Hydraulic power supply unit Hydraulic cylinder units, including: Electronically controlled fuel injection, and Electronically controlled exhaust valve activation Electronically controlled starting air valves Electronically controlled auxiliary blowers Integrated electronic governor functions Tacho system Electronically controlled Alpha lubricators

Why is a man hole door elliptical in shape?

Any opening in a pressure vessel is kept to a minimum and for a man entry an elliptical hole  is lesser in size than the corresponding circular hole. More over it is prime concern to have a  smoothed generous radius at the corners to eliminate stress concentration. Hence other  geometrical shapes like rectangle and square are ruled out.  To compensate for the loss of material in the shell due to opening, a doubler ring has to be  provided around the opening. The thickness of the ring depends on the axis length along the  dirrection in which the stresses are maximum and the thickness of the shell. It is important to  align the minor axis along the length of the vessel, as the stress in this direction is  maximum. Longitudinal stress: Pd/2t where P= pressure inside the vessel, d= diameter of the arc, t=  thickness of the shell plating  Circumferential stress: Pd/4t  More over a considerable material and weight saving is achieved as...