Skip to main content

Condition Monitoring

  • Condition monitoring (or, colloquially, CM) is the process of monitoring a parameter of condition in machinery (vibration, temperature etc.), in order to identify a significant change which is indicative of a developing fault. It is a major component of predictive maintenance. 
  • The use of condition monitoring allows maintenance to be scheduled, or other actions to be taken to prevent failure and avoid its consequences. 
  • Condition monitoring has a unique benefit in that conditions that would shorten normal lifespan can be addressed before they develop into a major failure. 
  • Condition monitoring techniques are normally used on rotating equipment and other machinery (pumps, electric motors, internal combustion engines, presses),
Condition monitoring techniques
  • Vibration and shock pulse data measured from all machinery. On the spot analysis and interpretation of results.
  • Thermo graphic inspection of all electrical and some critical mechanical systems.
  • Pressure and vacuum leak detection using passive ultrasonic frequency methods.
  • Thickness measurement of critical machinery systems.
  • Main and auxiliary engines performance test and power balance analysis.Detailed machinery health assessment report.
Benefits:
  • Help maximize the availability of your critical and auxiliary machinery
  • Simplify maintenance and reduce maintenance costs
  • Give an early indication of possible problems
  • When a machine is operating properly, the vibration is small and constant, however, when faults develop and some of the dynamic process in the machine changes, there will be changes in vibration spectrum observed.
When a fault takes places, some of the machine parameters are subjected to change. The change in the machine parameters depends upon the degree of faults and the interaction with other parameters.
In most cases, more than one parameter are subjected to change under abnormal condition.
Condition monitoring can be carried out when the equipment is in operation, which known as on-line, or when it is off-line, which means when it is down and not in the operation.
While on-line, the critical parameters that are possible to monitor are speed, temperature, vibration, and sound. These may be continuously monitored or may be done periodically. Off-line monitoring is carried out when the machine is down for whatever reason.
The monitoring in such would include crack detection, a thoroughly check of alignment, state of balancing, the search for tell-tale sign of corrosion, pitting, and so on.
Vibration signals are the most versatile parameters in machine condition monitoring techniques.
Periodic vibration checks reveal whether troubles are present or impending. Vibration signature analysis reveals which part of the machine is defective and why.
 Although a number of vibration analysis techniques have been developed for this purpose, still a lot of scope is there to reach a stage of expertise.

Comments

Popular posts from this blog

Differences between MC/MC-C and ME/ME-C engines

The electrohydraulic control mechanisms of the ME engine replace the following components of the conventional MC engine: Chain drive for camshaft Camshaft with fuel cams, exhaust cams and indicator cams Fuel pump actuating gear, including roller guides and reversing mechanism Conventional fuel pressure booster and VIT system Exhaust valve actuating gear and roller guides Engine driven starting air distributor Electronic governor with actuator Regulating shaft Engine side control console Mechanical cylinder lubricators. The Engine Control System of the ME engine comprises: Control units Hydraulic power supply unit Hydraulic cylinder units, including: Electronically controlled fuel injection, and Electronically controlled exhaust valve activation Electronically controlled starting air valves Electronically controlled auxiliary blowers Integrated electronic governor functions Tacho system Electronically controlled Alpha lubricators

Why is a man hole door elliptical in shape?

Any opening in a pressure vessel is kept to a minimum and for a man entry an elliptical hole  is lesser in size than the corresponding circular hole. More over it is prime concern to have a  smoothed generous radius at the corners to eliminate stress concentration. Hence other  geometrical shapes like rectangle and square are ruled out.  To compensate for the loss of material in the shell due to opening, a doubler ring has to be  provided around the opening. The thickness of the ring depends on the axis length along the  dirrection in which the stresses are maximum and the thickness of the shell. It is important to  align the minor axis along the length of the vessel, as the stress in this direction is  maximum. Longitudinal stress: Pd/2t where P= pressure inside the vessel, d= diameter of the arc, t=  thickness of the shell plating  Circumferential stress: Pd/4t  More over a considerable material and weight saving is achieved as minor is along the  direction of maximum stress.

Shell Expansion Plan

It is a two dimensional drawing of a three dimensional surface of the ship’s hull form. This plan is very useful for the following information:It is used for marking the location of a hull Damage on this plan by identifying the strake number , letter and frame number so that the exact location of the damage and also suggested repairs are marked in a localised copy. The shell expansion can be used for finding areas of painting surfaces such as topside, boot topping and bottom areas by applying Simpsons rules directly.  In the shell expansion the vertical scale used is different from the horizontal scale and a suitable adjustment has to be made when calculating areas. This becomes useful in solving disputes concerning areas of preparation and painting. It gives information on the thickness of the original strake which is indicated by the number in the circle shown in the strake.  The quality of steel used is also shown by letters A,B,D E and AH, BH,DH, EH.